

Predictability (and Performance)
●  Predictability important for embedded systems, but threatened by

modern architecture development
Objectives:
●  Technology and design techniques for achieving predictability of

systems, especially on multi-core platforms
●  Trade-offs between (average-case) performance
 and (worst-case) predictability
Expected Impact:
●  Tools and Techniques for building predictable systems
●  Awareness about predictability issues in system and platform design

Why a transversal activity?:
Predictability transverses levels of abstraction
●  Verification, modeling, compilation, OS, execution platforms

Industrial Sectors

●  Safety-critical systems:
–  transportation, power automation, medical systems, ...
–  Market of over $900 million in 2008 [int. ARC Advisory Group]

●  Sectors where systems failure leads to severe economic
consequences:

–  consumer electronics, telecom, ...

●  Systems that require both precise execution time and
high throughput

Partners
OS & Networks

●  Cantabria
(Michael Gonzalez–Harbour)

●  SSSA (Giorgio Buttazzo)

●  York (Alan Burns)

Hardware Platforms & MPSoC

●  Bologna (Luca Benini)

●  Braunschweig (Rolf Ernst)

●  ETH Zürich (Lothar Thiele)

●  IMEC (Maya d’Hondt)

●  Linköping (Petru Eles)

Modeling & Validation

●  IST (Tom Henzinger)

●  INRIA (Alain Girault)

●  Uppsala (Bengt Jonsson, Wang Yi)

●  Trento (Alberto Sangiovanni–
Vincentelli)

Code Generation & Timing analysis

●  Dortmund (Peter Marwedel)

●  Saarland (Reinhard Wilhelm, Jan
Reineke)

●  Vienna (Peter Puschner)

Integration: Aims

Most existing work was within one system level, e.g,:
●  Modeling and verification of timed component-based

systems,
●  Timing analysis for programs
●  Compiler techniques for timing and memory predictability
●  OS Scheduling and resource management
●  Sharing of resources on multi-cores

Main goal of the predictability activity:
●  To integrate research across different levels of abstraction

Integration: Some Achievements
●  Quantitative definition of “Predictability”
●  Predictability of cache replacement policies
●  Integrating Timing analysis into compilation

●  Timing-predictable languages (PRET_C)
●  Predictable software on multicores

–  Isolation of memory accesses and of bus accesses
–  Multicore scheduling

●  Design Principles for Industrial Practice
●  Standardization (MARTE)
●  Predictability/Reliability of Embedded Networked Systems
●  Tools: aiT, WCC, MST, MPA, MPARM, UPPAAL
●  European projects: Predator, T-Crest,

Quantitative Definition of Predictability

Some tentative suggestions:
●  Predictability ≈ Determinism ?

●  Predictability ≈ Analyzability ?

Towards quantitative definition for architectural elements: [Grund 11]

●  Inherent to the element considered

●  independent of analysis method

●  Provides quantitative measure

Towards Definition of Predictability [Grund 11]
Predictability ≈ variability of considered quantity
 under explicitly given sources of uncertainty
Examples:
●  Execution time of task with uncertain initial state and/or input:

 BCET ⁄ WCET over the possible initial states and/or inputs

Towards Definition of Predictability [Grund 11]
Predictability ≈ variability of considered quantity
 under explicitly given sources of uncertainty
Examples:
●  Execution time of task with uncertain initial state and/or input:

 BCET ⁄ WCET over the possible initial states and/or inputs

●  Cache replacement policy with initial state uncertainty

 Min / Max number of cache misses for a program of length n

–  Consider this ratio as n →∞
–  Results for different policies (8-way associative caches) [Reineke, Grund 08]

–  Highly predictable ≡ 1 (eventual independence of initial state)
–  Otherwise analysis of preemptive code difficult

LRU FIFO PLRU
1 1/8 0

Caches and Preemptive Scheduling

Analysis must predict if cache blocks survive preemption

 Improved calculation of Cache-Related Preemption Delay (CRPD)
•  Considers how many accesses a reempted block can tolerate
•  Implemented in aiT for several architectures

Arbitrary preemptions decrease schedulability due to CRPD
 Allow context switches only at fixed preemption points (FPP)

•  FPP can be placed to minimize CRPD
•  or to minimize system stack usage
•  Implemented in aiT

[AbsInt, U. Saarland, SSSA]

MRU Replacement [Guan Lv Yi 12]

●  Used in Intel Nehalem

●  As good average-case performance as LRU [2]
–  superior to FIFO and PLRU

●  But considered “un-predictable”

●  MRU is a kind of approximation of LRU

[2] Performance Evaluation of Cache Replacement Policies for the SPEC CPU2000 Benchmark Suite, H. Al-Zoubi, A.
Milenkovic, M. Milenkovic, in Proc. 42nd ACM Southeast Conference, 2004.

a
b
c
d

1
0
0
1

f
a
f
c
d

1
1
0
1

d
a
f
c
d

1
1
0
1

c
a
f
c
d

0
0
1
0

e
e
f
c
d

1
0
1
0

Analyzability of MRU replacement policy

●  Used in commercial processors, e.g., Nehalem
●  Low-cost ”approximation” of LRU
●  Previously considered ”unpredictable”
●  New result makes MRU predictable and analyzable
●  IDEA: new classification of memory access: k-Miss

–  Always Hit in LRU ⇒ (at most) k-Miss in MRU

●  Can be analyzed using state-of-the-art LRU analysis
●  On a considered benchmark, estimated WCET under

MRU is only 5%~10% more than under LRU

[Uppsala]

Timing-Aware Compilation
 [AbsInt + Dortmund + ETHZ + USAAR]

WCC compiler: integrates compilation [Dortmund] and timing analysis [AbsInt]

Makes programs timing-aware, and allows to develop optimizations for WCET
Work in the last year includes
•  WCET-driven cache-aware memory content selection
•  WCET-aware superblock optimizations

(awarded three times, e.g. as best computer science thesis in Germany)
•  Basic block reordering for improved branch prediction
•  Loop-invariant code motion ported towards WCET, based on machine

learning
•  WCET- and pipeline-aware register allocation using integer-linear

programming (ILP)
•  Adaptive WCET-aware compilation: automatic computation of Pareto-

optimal solutions trading off WCET, ACET and code size
•  Scratchpad allocation for multi-task programs

Deterministic Programming with Timing Semantics

●  PRET-C and SC: extensions of C with primitives for multi-threading,
reactive inputs and outputs, tick barrier, predictable loops…

●  Synchronous semantics providing deterministic and thread-safe
communication through shared variables.

●  Programs can run on a dedicated reactive processor (RP) or on a
general purpose processor (GPP).

●  The synchronous hypothesis is validated by computing the WCRT
and comparing with the execution time constraint.

●  Papers published at DATE’09, EMSOFT’09, CASES’09, DATE’10,
MEMOCODE’10, DATE’11, DATE’12.

[INRIA, U. Kiel, U. Saarland, U Bamberg]

WCRT analysis for PRET-C and SC
●  WCRT analysis is based on UPPAAL.

●  Infeasible execution paths are pruned
thanks to a new data-flow analysis.

●  Benchmarks made with speculative
features off.

●  Sizes between 400 and 1600 LOCs.

●  Execution on our RP improves the
WCRT by 26% vs GPP.

●  The WCRT achieved with PRET-C is
20% better than with ProtoThreads and
50% better than with Esterel.

Predictability for MultiCores
●  Predictable timing behavior for system and for single tasks

requires to eliminate interference on shared buses, memories, …
●  Eliminate interference on shared memories (L3 cache)

–  Scratchpads/Cache locking for data in shared caches
–  or: Cache coloring

●  Interference on bus:
–  Consider interference in analysis
–  or: Bound it, e.g., using TDMA

●  Use suitable scheduling policy

Bus

CPU

Private
Memory

Shared
Memory

CACHE

CPU

CACHE

CPU

CACHE

Private
Memory

Private
Memory

[most partners]

Control Sharing by Cache-Coloring [Uppsala]

No sharing of cache lines between cores

Task 1 Task 2 Task 3 Task 4

Cache-Coloring

Task 1 Task 2 Task 3 Task 4

Logical view

Cache-Coloring

●  E.g. LINUX – Power5 (16 colors)

… …

Logical Pages of Task A Logical Pages of Task B

Physical Pages

… … … …

L2 Cache

controlled by
software (OS)

indexed by hardware

Considering Interference on Shared Bus

Timed CFG

Timed model of Bus Arbitrarion (FCFS, TDMA)

Timed CFG Timed CFG

Considering Interference on Shared Bus

Timed CFG

Timed model of Bus Arbitrarion (FCFS, TDMA)

Timed CFG

Timing bounds for tasks

Timed CFG

Global Timing Analysis using UPPAAL

Considering Interference on Shared Bus

Timed CFG

Timed model of Bus Arbitrarion (FCFS, TDMA)

Timed CFG

Timing bounds for tasks

On Mälardalen benchmark, much better than pessimistic analysis
Implemented in tool McAIT h"p://www.neu-­‐rtes.org/mcait

Timed CFG

Global Timing Analysis using UPPAAL

Bounding Interference by TDMA

Task graph

WCET calculation and task scheduling

TDMA bus
schedule

Worst-case global delay

Bounding Interference by TDMA

Task graph

WCET calculation and task scheduling

TDMA bus
schedule

Worst-case global delay

Techniques for optimizing ACET under requirements on
WCET [Linköping]

Superblock Model

●  Timing of accesses inside tasks important
●  Good to structure tasks as sequences of superblocks

–  bound on execution and communication requirements

–  (A)cquisition phase to read data
–  (E)xecution phase to perform computation
–  (R)eplication phase to write data

Superblock Model (contn.)

dedicated
model - DSS

general
model - GSS

hybrid
model - HSS

superblocks execute sequentially (S) or time-triggered (T)

Multiprocessor Scheduling

5 2

1 6

8

4
new task

waiting queue

cpu 1 cpu 2 cpu 3

Global Scheduling

cpu 1 cpu 2 cpu 3

5

1

2

8

6

3

9

7

4

cpu 1 cpu 2 cpu 3

2

5

2

1

2 2

3

6

7

4

2 3

Partitioned Scheduling Partitioned Scheduling
with Task Splitting

Achieving Liu/Layland bound f. multiprocessors

Lehoczky et al. CMU
ECRTS 2009

Liu and Layland’s Utilization Bound
●  Liu and Layland’s utilization bound for

single-processor scheduling [Liu1973]

 (the 19th most cited paper in computer science)

 : the number of tasks,

Achieving Liu/Layland bound f. multiprocessors

 [Guan Stigge Yi Gu 09]

Achieving Liu/Layland bound f. multiprocessors

 [Guan Stigge Yi Gu 09]

Main idea:
•  Partition tasks up to the LL utilization bound
•  Split (few) remaining tasks on several processors
•  Needs (some) task migration

Achieving Liu/Layland bound f. multiprocessors

 [Guan Stigge Yi Gu 09]

Main idea:
•  Partition tasks up to the LL utilization bound
•  Split (few) remaining tasks on several processors
•  Needs (some) task migration

Tasks can be split and migrated
with low overhead
 [Zhang Guan Zhao Yi 11]

Integrated Analysis for MultiProcessor System

Tools for timing analysis have been integrated.

Here: report from demonstration on real automotive
application “DemoCar” [Bosch] in the Predator project
● WCC: compilation and WCET-aware allocation of code to scratchpads

● aiT: Analyze compiled code to generate model of local timing and bus
access patterns

● MPA: Calculate actual timing for each core from its timing model and bus
access patterns of interfering cores

[AbsInt, Bosch, ETH Zurich, U. Saarland]

Application Configuration

L2 Shared Code Flash

Core 1

TC1797 CPU
Actuator Task

L1
PSPM

Data
Mem

Core 2

TC1797 CPU
5ms Task

L1
PSPM

Data
Mem

Core 3

TC1797 CPU
10ms Task

L1
PSPM

Data
Mem

Core 4

TC1797 CPU
20ms Task

L1
PSPM

Data
Mem

•  4 cores on bus w. FlexRay
•  Code in Shared L2 Flash
•  One task on each core,
•  Tasks comprise 15 runnables from engine control by

Bosch

Property of the PREDATOR consortium. Confidential.

WCRT using WCC/aiT and RTC

Runnables in
Application

Compilation by WCC

Executables

Worst-case Execution
Times and Bus
Access Parameters

Analysis by aiT

Global configuration
with bus access
parameters

Timing model of
interference

WCRT analysis for
FlexRay

WCRT analysis for
TDMA schedule

A
na

ly
si

s
by

 M
PA

 to
ol

bo
x

Representation of bus interference in MPA

Property of the PREDATOR consortium. Confidential.

●  Core 1:
under analysis

●  Cores 2,3,4
Interferers

Conclusions: Tool Integration Works!
●  WCET-aware compilation, optimization, WCET analysis practical:

–  50.000 lines of industrial code takes only 1 minute,

●  WCET-aware optimizations outperform GCC by up to 45% in terms
of WCET

●  Fully automatic integration of

–  Compilation (WCC)
–  Static WCET analysis of individual tasks (aiT)
–  Compositional timing analysis on system level (MPA)

Smart Configuration: Application on P4080
Explore PROMPT guidelines
● Increase predictability on the single core level

–  Partial cache locking, static branch prediction
● Privatization

–  Each core allocates required data in its private L2 cache
–  Accesses to main memory only allowed within time slots determined by

TDMA-based resource scheduling (cf. Schranzhofer et al.)
 Improved Predictability

c1

c2

c3

c4

Access to
memory controller

read slot write slot

[AbsInt]

Picture of the P4080

Standardization of UML MARTE [Cantabria]

●  Participation to MARTE, Real-time and Embedded systems profile
for UML

–  Continuation of effort in ARTIST, ARTIST2,
–  Major role of Univ. Cantabria in the development of this standard
–  Evolution into MARTE 1.2

●  Impact
–  OMG standard
–  Several PhD Thesis in Europe
–  Usage in several companies
–  Interest shown by around 75 issues being raised in this year

●  Participation in SySML standard
–  Trying to align it with UML MARTE

Dissemination of MARTE
●  Built a collaborative web page for dissemination of the standard

●  Now it’s the official OMG web page for MARTE

 http://www.omgmarte.org

●  Organized: ArtistDesign Workshop on Real-Time System Models for
Schedulability Analysis

●  Backends for Analysis:

●  marte2mast: a new tool for obtaining schedulability analysis
models from MARTE systems

●  Using the MAST modelling technology
●  http://mast.unican.es/umlmast/marte2mast

●  Backend also exists for SymTaVision

ES reliability issues: coping with errors
h Errors and fault-tolerance impact real-time constraints

h reliability depends on error coverage and runtime
overhead for error handling
h Are results logically correct even if errors occur?

h Are results provided in time even if errors occur?

h if error coverage is very high (e.g. EDC on CAN):
h timing failures are the crucial part (e.g. deadline misses)
h for safety-critical functions: timing failure rate must be

bounded

  safety requirements specified in standards such as IEC 61508

Reliability analysis: a formal approach (2/2)
●  (a) derive transmission or execution

trace based on the given task set
  timing prediction for each job

●  (b) for each job τi,j: enumerate all
error situations which do not cause to
miss τi,j its deadline

  working set Wi,j

●  (c) for each job τi,j : calculate the
proba-bility that τi,j do not miss its
deadline

  success probability Si,j

(d)  compose all success probabilities
within the hyperperiod using AND-
composition

  reliability function R(t)

Tools and Platforms
●  AiT, the leading tool for computing WCETs [AbsInt, Dortmund,

Saarland]

●  WCC, the WCET aware compiler [AbsInt, Dortmund, Saarland]

●  MAST, modeling and analysis suite for real-time applications
[Cantabria]

●  MPA toolbox, analysis of distributed embedded real-time systems,
based on the real-time calculus [ETHZ]

●  MPARM, virtual SoC platform, written in SystemC, to model system
HW and SW [Bologna]

●  UPPAAL, leading tool for precise automata-based analysis of timed
systems [Uppsala, Aalborg]

●  PRET_C, predictable multithreaded programming in C [INRIA,
Auckland]

Survey Papers and Workshops
Survey paper by Members of Transversal Activity on Predictability:
 Building Predictable Embedded Systems, being submitted

Workshops organized by this activity
● PPES 2011: Performance and Predictability in Embedded Systems
 DATE, Grenoble, France, March 18, 2011

● Workshop on Reconciliating Performance and Predictability
 ESWEEK , Grenoble, France – October, 2009

Some other papers

● E. Frank, R. Wilhelm, et al.: Methods, Tools and Standards for the Analysis, Evaluation
and Design of Modern Automotive Architectures. DATE 2008: 659-663

● R. Wilhelm, D. Grund, et al.: Memory Hierarchies, Pipelines, and Buses for Future
Architectures in Time-Critical Embedded Systems. IEEE TRans. On CAD of Intrated
Circuits and Systems 28(7): 966-978 (2009)

● C. Cullmann, C. Ferdinand, et al.: Predictability considerations in the design of multi-core
embedded systems, Presented at ERTS2, Toulouse, May 2010

Concluding Remarks

●  ARTISTDesign has contributed to an integrated view on
how to achieve predictability in embedded systems
design

●  Establishing concrete collaborations and tool integrations

●  A basis for establishing new collaborative projects

●  Emerging focus on Mixed-Criticality,
–  E.g., the CERTAINTY project

